Search results
Results from the WOW.Com Content Network
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of
Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (n, k) code. Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code ...
Linear block codes that achieve equality in the Singleton bound are called MDS (maximum distance separable) codes. Examples of such codes include codes that have only codewords (the all-word for , having thus minimum distance ), codes that use the whole of () (minimum distance 1), codes with a single parity symbol (minimum distance 2) and their ...
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
Examples of block codes are Reed–Solomon codes, Hamming codes, Hadamard codes, Expander codes, Golay codes, Reed–Muller codes and Polar codes. These examples also belong to the class of linear codes, and hence they are called linear block codes. More particularly, these codes are known as algebraic block codes, or cyclic block codes ...
The following C language code demonstrates how to add a new node with the "value" to the end of a singly linked list: // Each node in a linked list is a structure. The head node is the first node in the list.
The aim of a self-organizing list is to improve efficiency of linear search by moving more frequently accessed items towards the head of the list. A self-organizing list achieves near constant time for element access in the best case. A self-organizing list uses a reorganizing algorithm to adapt to various query distributions at runtime.