Search results
Results from the WOW.Com Content Network
The decrease in number of bacteria may even become logarithmic. Hence, this phase of growth may also be called as negative logarithmic or negative exponential growth phase. Near the end of the logarithmic phase of a batch culture, competence for natural genetic transformation may be induced, as in Bacillus subtilis [10] and in other bacteria ...
Subculturing can also be used for growth curve calculations (ex. generation time) [2] and obtaining log-phase microorganisms for experiments (ex. Bacterial transformation). [3] Typically, subculture is from a culture of a certain volume into fresh growth medium of equal volume, this allows long-term maintenance of the cell line.
Logarithmically growing bacteria differ from stationary phase bacteria with respect to the number of genome copies present in the cell, and this has implications for the capability to carry out an important DNA repair process. During logarithmic growth, two or more copies of any particular region of the chromosome may be present in a bacterial ...
Mollicutes is a class of bacteria [2] distinguished by the absence of a cell wall. The word "Mollicutes" is derived from the Latin mollis (meaning "soft" or "pliable"), and cutis (meaning "skin"). Individuals are very small, typically only 0.2–0.3 μm (200–300 nm) in size and have a very small genome size.
[122] [123] The second phase of growth is the logarithmic phase, also known as the exponential phase. The log phase is marked by rapid exponential growth. The rate at which cells grow during this phase is known as the growth rate (k), and the time it takes the cells to double is known as the generation time (g). During log phase, nutrients are ...
In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]
Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).
L-form bacteria, also known as L-phase bacteria, L-phase variants or cell wall-deficient bacteria (CWDB), are growth forms derived from different bacteria. They lack cell walls . [ 1 ] Two types of L-forms are distinguished: unstable L-forms , spheroplasts that are capable of dividing, but can revert to the original morphology, and stable L ...