enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backpropagation - Wikipedia

    en.wikipedia.org/wiki/Backpropagation

    In machine learning, backpropagation [1] is a gradient estimation method commonly used for training a neural network to compute its parameter updates. It is an efficient application of the chain rule to neural networks.

  3. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...

  4. Delta rule - Wikipedia

    en.wikipedia.org/wiki/Delta_rule

    is a small constant called learning rate g ( x ) {\\displaystyle g(x)} is the neuron's activation function g ′ {\\displaystyle g'} is the derivative of g {\\displaystyle g}

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    The standard method for training RNN by gradient descent is the "backpropagation through time" (BPTT) algorithm, which is a special case of the general algorithm of backpropagation. A more computationally expensive online variant is called "Real-Time Recurrent Learning" or RTRL, [ 78 ] [ 79 ] which is an instance of automatic differentiation in ...

  6. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    However, it was not the backpropagation algorithm, and he did not have a general method for training multiple layers. In 1965, Alexey Grigorevich Ivakhnenko and Valentin Lapa published Group Method of Data Handling. It was one of the first deep learning methods, used to train an eight-layer neural net in 1971. [14] [15] [16]

  7. Almeida–Pineda recurrent backpropagation - Wikipedia

    en.wikipedia.org/wiki/Almeida–Pineda_recurrent...

    Almeida–Pineda recurrent backpropagation is an extension to the backpropagation algorithm that is applicable to recurrent neural networks. It is a type of supervised learning . It was described somewhat cryptically in Richard Feynman 's senior thesis, and rediscovered independently in the context of artificial neural networks by both Fernando ...

  8. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    In machine learning, the vanishing gradient problem is encountered when training neural networks with gradient-based learning methods and backpropagation. In such methods, during each training iteration, each neural network weight receives an update proportional to the partial derivative of the loss function with respect to the current weight ...

  9. Rprop - Wikipedia

    en.wikipedia.org/wiki/Rprop

    Rprop, short for resilient backpropagation, is a learning heuristic for supervised learning in feedforward artificial neural networks. This is a first-order optimization algorithm. This algorithm was created by Martin Riedmiller and Heinrich Braun in 1992. [1]