Search results
Results from the WOW.Com Content Network
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
André Authier: Dynamical theory of X-ray diffraction. IUCr monographs on crystallography, no. 11. Oxford University Press (1st edition 2001/ 2nd edition 2003). ISBN 0-19-852892-2. R. W. James: The Optical Principles of the Diffraction of X-rays. Bell., 1948. M. von Laue: Röntgenstrahlinterferenzen. Akademische Verlagsanstalt, 1960 (German).
The detector end of a simple x-ray diffractometer with an area detector. The direction of the X-rays is indicated with the red arrow. A typical diffractometer consists of a source of radiation, a monochromator to choose the wavelength, slits to adjust the shape of the beam, a sample and a detector.
To determine the crystallographic orientation of the grains in the considered sample, the following software packages are in use: Fable [8] and GrainSpotter. [9] Reconstructing the 3D shape of the grains is nontrivial and three approaches are available to do so, respectively based on simple back-projection, forward projection, algebraic ...
X-ray diffraction is a non destructive method of characterization of solid materials. When X-rays are directed at solids they scatter in predictable patterns based on the internal structure of the solid. A crystalline solid consists of regularly spaced atoms (electrons) that can be described by imaginary planes.
Molecular replacement (MR) [1] is a method of solving the phase problem in X-ray crystallography.MR relies upon the existence of a previously solved protein structure which is similar to our unknown structure from which the diffraction data is derived.
XRD may refer to: X-ray diffraction , used to study the structure, composition, and physical properties of materials Extensible Resource Descriptor , an XML format for discovery of metadata about a web resource