enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Backward differentiation formula - Wikipedia

    en.wikipedia.org/wiki/Backward_differentiation...

    The backward differentiation formula (BDF) is a family of implicit methods for the numerical integration of ordinary differential equations.They are linear multistep methods that, for a given function and time, approximate the derivative of that function using information from already computed time points, thereby increasing the accuracy of the approximation.

  3. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  4. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    Newton's form has the simplicity that the new points are always added at one end: Newton's forward formula can add new points to the right, and Newton's backward formula can add new points to the left. The accuracy of polynomial interpolation depends on how close the interpolated point is to the middle of the x values of the set of points used ...

  5. Explicit and implicit methods - Wikipedia

    en.wikipedia.org/wiki/Explicit_and_implicit_methods

    In the vast majority of cases, the equation to be solved when using an implicit scheme is much more complicated than a quadratic equation, and no analytical solution exists. Then one uses root-finding algorithms, such as Newton's method, to find the numerical solution. Crank-Nicolson method. With the Crank-Nicolson method

  6. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.

  7. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  8. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Iterative methods such as Newton's method are often used to solve the implicit formula. Sometimes an explicit multistep method is used to "predict" the value of +. That value is then used in an implicit formula to "correct" the value. The result is a predictor–corrector method.

  9. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The backward Euler method is an implicit method, meaning that the formula for the backward Euler method has + on both sides, so when applying the backward Euler method we have to solve an equation. This makes the implementation more costly.