Search results
Results from the WOW.Com Content Network
Fourier transform infrared spectroscopy (FTIR) [1] is a technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas. An FTIR spectrometer simultaneously collects high-resolution spectral data over a wide spectral range.
Fourier-transform spectroscopy (FTS) is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not.
There are two main approaches to two-dimensional spectroscopy, the Fourier-transform method, in which the data is collected in the time-domain and then Fourier-transformed to obtain a frequency-frequency 2D correlation spectrum, and the frequency domain approach in which all the data is collected directly in the frequency domain.
The schematic representation of a nano-FTIR system with a broadband infrared source. Nano-FTIR (nanoscale Fourier transform infrared spectroscopy) is a scanning probe technique that utilizes as a combination of two techniques: Fourier transform infrared spectroscopy (FTIR) and scattering-type scanning near-field optical microscopy (s-SNOM).
Traditional diagnostic procedures for skin cancers involve visual assessment and biopsy, but a new laser-induced fluorescence spectroscopy technique allow dermatologists to compare spectrographs of a patient's skin with spectrographs known to correspond with malignant tissue. This provides doctors with earlier diagnosis and treatment options.
FTIR spectroscopy can provide insightful information in the microstructure for different plant taxa. Cuticles is a waxy protective layer that covers plant leaves and stems to prevent loss of water. Its constituted waxy polymers are generally well-preserved in plant fossil, which can be used for functional group analysis.
Six in 10 U.S. adults report that they drink, but several doctors told NBC News that their patients generally aren’t aware that alcohol consumption can lead to cancers of the mouth, throat ...
Exposure to ionizing radiation is known to increase the future incidence of cancer, particularly leukemia.The mechanism by which this occurs is well understood, but quantitative models predicting the level of risk remain controversial.