Search results
Results from the WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
For every set X, there is a unique function, called the empty function, or empty map, from the empty set to X. The graph of an empty function is the empty set. [note 5] The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements.
Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4.The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1.
A linear function is a polynomial function in which the variable x has degree at most one: [2] . Such a function is called linear because its graph, the set of all points in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below). If the slope is , this is a constant function defining a ...
A function f from X to Y. The set of points in the red oval X is the domain of f. Graph of the real-valued square root function, f(x) = √ x, whose domain consists of all nonnegative real numbers. In mathematics, the domain of a function is the set of inputs accepted by the function.
The graphs of y = f(x) and y = f −1 (x). The dotted line is y = x. If f is invertible, then the graph of the function = is the same as the graph of the equation = (). This is identical to the equation y = f(x) that defines the graph of f, except that the roles of x and y have
Closed graph property. In mathematics, particularly in functional analysis and topology, closed graph is a property of functions. [1][2] A function f : X → Y between topological spaces has a closed graph if its graph is a closed subset of the product space X × Y. A related property is open graph. [3]