enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Planck–Einstein equation and de Broglie wavelength relations. P = (E/c, p) is the four-momentum, K = (ω / c, k) is the four-wavevector, E = energy of particle. ω = 2π f is the angular frequency and frequency of the particle. ħ = h /2π are the Planck constants. c = speed of light.

  3. Schrödinger equation - Wikipedia

    en.wikipedia.org/wiki/Schrödinger_equation

    Linearity. The Schrödinger equation is a linear differential equation, meaning that if two state vectors and are solutions, then so is any linear combination of the two state vectors where a and b are any complex numbers. [13]: 25 Moreover, the sum can be extended for any number of state vectors.

  4. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    Electromagnetic wave equation. The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or ...

  5. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    where = is the reduced Planck constant.. The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.

  6. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    Rectangular potential barrier. In quantum mechanics, the rectangular (or, at times, square) potential barrier is a standard one-dimensional problem that demonstrates the phenomena of wave-mechanical tunneling (also called "quantum tunneling") and wave-mechanical reflection. The problem consists of solving the one-dimensional time-independent ...

  7. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.

  8. Korteweg–De Vries equation - Wikipedia

    en.wikipedia.org/wiki/Korteweg–De_Vries_equation

    Cnoidal wave solution to the Korteweg–De Vries equation, in terms of the square of the Jacobi elliptic function cn (and with value of the parameter m = 0.9). Numerical solution of the KdV equation u t + uu x + δ 2 u xxx = 0 (δ = 0.022) with an initial condition u(x, 0) = cos(πx). Time evolution was done by the Zabusky–Kruskal scheme. [1]

  9. Speed of light - Wikipedia

    en.wikipedia.org/wiki/Speed_of_Light

    The speed at which light propagates through transparent materials, such as glass or air, is less than c; similarly, the speed of electromagnetic waves in wire cables is slower than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material (n = ⁠ c / v ⁠).