Search results
Results from the WOW.Com Content Network
Consider any primitive solution (x, y, z) to the equation x n + y n = z n. The terms in (x, y, z) cannot all be even, for then they would not be coprime; they could all be divided by two. If x n and y n are both even, z n would be even, so at least one of x n and y n are odd. The remaining addend is either even or odd; thus, the parities of the ...
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
To determine the value (), note that we rotated the plane so that the line x+y = z now runs vertically with x-intercept equal to c. So c is just the distance from the origin to the line x + y = z along the perpendicular bisector, which meets the line at its nearest point to the origin, in this case ( z / 2 , z / 2 ) {\displaystyle (z/2,z/2)\,} .
In mathematics, the mean value problem was posed by Stephen Smale in 1981. [1] This problem is still open in full generality. The problem asks: For a given complex polynomial of degree [2] A and a complex number , is there a critical point of (i.e. ′ =) such that
In number theory, the optic equation is an equation that requires the sum of the reciprocals of two positive integers a and b to equal the reciprocal of a third positive integer c: [1]
o,p,q,r,s,t = i+j, i+k, i+l, i+m, n+j, n+k; u,v,w,x,y,z = n+l, n+m, j+l, l+m, m+k, k+j If one now calls this volume "4D" as in "four-dimensional" or "four-directional" we have primed the pump for an understanding of R. Buckminster Fuller's "4D geometry," or Synergetics .