Search results
Results from the WOW.Com Content Network
Pandas (styled as pandas) is a software library written for the Python programming language for data manipulation and analysis. In particular, it offers data structures and operations for manipulating numerical tables and time series .
Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.
The pandas package in Python implements this operation as "melt" function which converts a wide table to a narrow one. The process of converting a narrow table to wide table is generally referred to as "pivoting" in the context of data transformations.
"Data frames," as implemented in R, Python's Pandas package, and Julia's DataFrames.jl package, are interfaces to access SoA like AoS. The Julia package StructArrays.jl allows for accessing SoA as AoS to combine the performance of SoA with the intuitiveness of AoS. Code generators for the C language, including Datadraw and the X Macro technique.
Python, an open-source programming language widely used in data mining and machine learning. R, an open-source programming language for statistical computing and graphics. Together with Python one of the most popular languages for data science. TinkerPlots an EDA software for upper elementary and middle school students.
Standard examples of data-driven languages are the text-processing languages sed and AWK, [1] and the document transformation language XSLT, where the data is a sequence of lines in an input stream – these are thus also known as line-oriented languages – and pattern matching is primarily done via regular expressions or line numbers.
Comma-separated values (CSV) is a text file format that uses commas to separate values, and newlines to separate records. A CSV file stores tabular data (numbers and text) in plain text, where each line of the file typically represents one data record.
The Python programming language can access netCDF files with the PyNIO [14] module (which also facilitates access to a variety of other data formats). netCDF files can also be read with the Python module netCDF4-python, [15] and into a pandas-like DataFrame with the xarray module. [16]