Search results
Results from the WOW.Com Content Network
In computer science, a stable sorting algorithm preserves the order of records with equal keys. In numerical analysis, a numerically stable algorithm avoids magnifying small errors. An algorithm is stable if the result produced is relatively insensitive to perturbations during computation.
A stable learning algorithm would produce a similar classifier with both the 1000-element and 999-element training sets. Stability can be studied for many types of learning problems, from language learning to inverse problems in physics and engineering, as it is a property of the learning process rather than the type of information being learned.
Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. [1] [2] It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages.
An early example of answer set programming was the planning method proposed in 1997 by Dimopoulos, Nebel and Köhler. [3] [4] Their approach is based on the relationship between plans and stable models. [5] In 1998 Soininen and Niemelä [6] applied what is now known as answer set programming to the problem of product configuration. [4]
Stable sorting algorithms maintain the relative order of records with equal keys (i.e. values). That is, a sorting algorithm is stable if whenever there are two records R and S with the same key and with R appearing before S in the original list, R will appear before S in the sorted list.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
An algorithm for solving a linear evolutionary partial differential equation is stable if the total variation of the numerical solution at a fixed time remains bounded as the step size goes to zero. The Lax equivalence theorem states that an algorithm converges if it is consistent and stable (in this sense).
With this condition, a stable matching will still exist, and can still be found by the Gale–Shapley algorithm. For this kind of stable matching problem, the rural hospitals theorem states that: The set of assigned doctors, and the number of filled positions in each hospital, are the same in all stable matchings.