enow.com Web Search

  1. Ads

    related to: bcd subtraction using 2s complement video worksheet 1 free

Search results

  1. Results from the WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    Using sign-magnitude representation requires only complementing the sign bit of the subtrahend and adding, but the addition/subtraction logic needs to compare the sign bits, complement one of the inputs if they are different, implement an end-around carry, and complement the result if there was no carry from the most significant bit.

  4. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    There are tricks for implementing packed BCD and zoned decimal add–or–subtract operations using short but difficult to understand sequences of word-parallel logic and binary arithmetic operations. [49] For example, the following code (written in C) computes an unsigned 8-digit packed BCD addition using 32-bit binary operations:

  5. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Mainframes such as the IBM System/360, the GE-600 series, [2] and the PDP-6 and PDP-10 use two's complement, as did minicomputers such as the PDP-5 and PDP-8 and the PDP-11 and VAX machines. The architects of the early integrated-circuit-based CPUs (Intel 8080, etc.) also chose to use two's complement math.

  6. Intel BCD opcodes - Wikipedia

    en.wikipedia.org/wiki/Intel_BCD_opcodes

    Adding BCD numbers using these opcodes is a complex task, and requires many instructions to add even modest numbers. It can also require a large amount of memory. [ 2 ] If only doing integer calculations, then all integer calculations are exact, so the radix of the number representation is not important for accuracy.

  7. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [1] [2] It is also known as the shift-and-add-3 algorithm, and can be implemented using a small number of gates in computer hardware, but at the expense of high latency. [3]

  1. Ads

    related to: bcd subtraction using 2s complement video worksheet 1 free