enow.com Web Search

  1. Ad

    related to: metabolism of glucose in liver lab

Search results

  1. Results from the WOW.Com Content Network
  2. Glutamate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glutamate_dehydrogenase

    SIRT4 is necessary to regulate the metabolism of amino acids as a method of controlling insulin secretion and regulating blood glucose levels. Bovine liver glutamate dehydrogenase was found to be regulated by nucleotides in the late 1950s and early 1960s by Carl Frieden.

  3. Carbohydrate metabolism - Wikipedia

    en.wikipedia.org/wiki/Carbohydrate_metabolism

    Glucose-6-phosphate can then progress through glycolysis. [1] Glycolysis only requires the input of one molecule of ATP when the glucose originates in glycogen. [1] Alternatively, glucose-6-phosphate can be converted back into glucose in the liver and the kidneys, allowing it to raise blood glucose levels if necessary. [2]

  4. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    Glucose-6-phosphate dehydrogenase is the rate-controlling enzyme of this pathway [citation needed]. It is allosterically stimulated by NADP + and strongly inhibited by NADPH. [7] The ratio of NADPH:NADP + is the primary mode of regulation for the enzyme and is normally about 100:1 in liver cytosol [citation needed]. This makes the cytosol a ...

  5. Glucose paradox - Wikipedia

    en.wikipedia.org/wiki/Glucose_paradox

    The glucose paradox was the observation that the large amount of glycogen in the liver was not explained by the small amount of glucose absorbed. [1] The explanation was that the majority of glycogen is made from a number of substances other than glucose. [1] The glucose paradox was first formulated by biochemists J. Denis McGarry and Joseph ...

  6. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...

  7. Glucose 6-phosphate - Wikipedia

    en.wikipedia.org/wiki/Glucose_6-phosphate

    Because of its prominent position in cellular chemistry, glucose 6-phosphate has many possible fates within the cell. It lies at the start of two major metabolic pathways: glycolysis and the pentose phosphate pathway. In addition to these two metabolic pathways, glucose 6-phosphate may also be converted to glycogen or starch for storage.

  8. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    Glycolysis results in the breakdown of glucose, but several reactions in the glycolysis pathway are reversible and participate in the re-synthesis of glucose (gluconeogenesis). [9] Glycolysis was the first metabolic pathway discovered: As glucose enters a cell, it is immediately phosphorylated by ATP to glucose 6-phosphate in the irreversible ...

  9. Gluconeogenesis - Wikipedia

    en.wikipedia.org/wiki/Gluconeogenesis

    Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. [1] In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the ...

  1. Ad

    related to: metabolism of glucose in liver lab