enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    For a flat (zero curvature) or a hyperbolic (negative curvature) spatial geometry, the topology can be either compact or infinite. [8] Many textbooks erroneously state that a flat or hyperbolic universe implies an infinite universe; however, the correct statement is that a flat universe that is also simply connected implies an infinite universe ...

  3. Curved space - Wikipedia

    en.wikipedia.org/wiki/Curved_space

    Curved space often refers to a spatial geometry which is not "flat", where a flat space has zero curvature, as described by Euclidean geometry. [1] Curved spaces can generally be described by Riemannian geometry , though some simple cases can be described in other ways.

  4. Space - Wikipedia

    en.wikipedia.org/wiki/Space

    In the 19th and 20th centuries mathematicians began to examine geometries that are non-Euclidean, in which space is conceived as curved, rather than flat, as in the Euclidean space. According to Albert Einstein's theory of general relativity, space around gravitational fields deviates from Euclidean space. [3]

  5. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    An example of negatively curved space is hyperbolic geometry (see also: non-positive curvature). A space or space-time with zero curvature is called flat. For example, Euclidean space is an example of a flat space, and Minkowski space is an example of a flat spacetime. There are other examples of flat geometries in both settings, though.

  6. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    The flat spacetime paradigm is fully equivalent to the curved spacetime paradigm in that they both represent the same physical phenomena. However, their mathematical formulations are entirely different. Working physicists routinely switch between using curved and flat spacetime techniques depending on the requirements of the problem.

  7. Two-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_space

    Two-dimensional spaces can also be curved, for example the sphere and hyperbolic plane, sufficiently small portions of which appear like the flat plane, but on which straight lines which are locally parallel do not stay equidistant from each-other but eventually converge or diverge, respectively.

  8. Curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Curved_spacetime

    Instead, the satellite moves through space only in response to local conditions. Since spacetime is everywhere locally flat when considered on a sufficiently small scale, the satellite is always following a straight line in its local inertial frame. We say that the satellite always follows along the path of a geodesic. No evidence of ...

  9. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    On small scales space appears flat – as does the surface of the Earth if one looks at a small area. On large scales however, space is bent by the gravitational effect of matter. Since relativity indicates that matter and energy are equivalent , this effect is also produced by the presence of energy (such as light and other electromagnetic ...