Search results
Results from the WOW.Com Content Network
However, when the ionic strength is changed the measured equilibrium constant will also change, so there is a need to estimate individual (single ion) activity coefficients. Debye–Hückel theory provides a means to do this, but it is accurate only at very low concentrations. Hence the need for an extension to Debye–Hückel theory.
In chemistry, ion association is a chemical reaction whereby ions of opposite electric charge come together in solution to form a distinct chemical entity. [1] [2] Ion associates are classified, according to the number of ions that associate with each other, as ion pairs, ion triplets, etc. Ion pairs are also classified according to the nature of the interaction as contact, solvent-shared or ...
By utilizing the interaction picture, one can use time-dependent perturbation theory to find the effect of H 1,I, [15]: 355ff e.g., in the derivation of Fermi's golden rule, [15]: 359–363 or the Dyson series [15]: 355–357 in quantum field theory: in 1947, Shin'ichirÅ Tomonaga and Julian Schwinger appreciated that covariant perturbation ...
The Debye–Hückel theory was proposed by Peter Debye and Erich Hückel as a theoretical explanation for departures from ideality in solutions of electrolytes and plasmas. [1] It is a linearized Poisson–Boltzmann model, which assumes an extremely simplified model of electrolyte solution but nevertheless gave accurate predictions of mean activity coefficients for ions in dilute solution.
Triple points mark conditions at which three different phases can coexist. For example, the water phase diagram has a triple point corresponding to the single temperature and pressure at which solid, liquid, and gaseous water can coexist in a stable equilibrium (273.16 K and a partial vapor pressure of 611.657 Pa).
Equilibrium constants are defined in terms of fugacity. If the gases are at sufficiently low pressure that they behave as ideal gases, the equilibrium constant can be defined as a quotient of partial pressures. An example of gas-phase equilibrium is provided by the Haber–Bosch process of ammonia synthesis.
As a verb, this word means to move forward on the hands and knees (close to the ground). OK, that's it for hints—I don't want to totally give it away before revealing the answer!
For example, if equilibrium is specified by a single chemical equation:, [24] ∑ j = 0 m ν j R j = 0 {\displaystyle \sum _{j=0}^{m}\nu _{j}R_{j}=0} where ν j is the stoichiometric coefficient for the j th molecule (negative for reactants, positive for products) and R j is the symbol for the j th molecule, a properly balanced equation will obey: