Search results
Results from the WOW.Com Content Network
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile
The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height (=).
Mathematically, it is given as = / where = acceleration due to gravity (app 9.81 m/s²), = initial velocity (m/s) and = angle made by the projectile with the horizontal axis. 2. Time of flight ( T {\displaystyle T} ): this is the total time taken for the projectile to fall back to the same plane from which it was projected.
Projectile path values are determined by both the sight height, or the distance of the line of sight above the bore centerline, and the range at which the sights are zeroed, which in turn determines the elevation angle. A projectile following a ballistic trajectory has both forward and vertical motion.
Assume the motion of the projectile is being measured from a free fall frame which happens to be at (x,y) = (0,0) at t = 0. The equation of motion of the projectile in this frame (by the equivalence principle) would be = ().
In 2D and shooting on a horizontal plane, parabola of safety can be represented by the equation y = u 2 2 g − g x 2 2 u 2 {\displaystyle y={\frac {u^{2}}{2g}}-{\frac {gx^{2}}{2u^{2}}}} where u {\displaystyle u} is the initial speed of projectile and g {\displaystyle g} is the gravitational field.
Rifleman's rule is a "rule of thumb" that allows a rifleman to accurately fire a rifle that has been calibrated for horizontal targets at uphill or downhill targets. The rule says that only the horizontal range should be considered when adjusting a sight or performing hold-over in order to account for bullet drop.
To use the pendulum, it is set up with a device to measure the horizontal distance of the pendulum swing, such as a light rod that would be pushed backwards by the rear of the pendulum as it moved. The shooter is seated at least 15 feet (5 m) back from the pendulum (reducing the effects of muzzle blast on the pendulum) and a bullet is fired ...