Search results
Results from the WOW.Com Content Network
Positron emission, beta plus decay, or β + decay is a subtype of radioactive decay called beta decay, in which a proton inside a radionuclide nucleus is converted into a neutron while releasing a positron and an electron neutrino (ν e). [1] Positron emission is mediated by the weak force.
The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.
The abundances of the naturally occurring isotopes of neon. Neon (10 Ne) possesses three stable isotopes: 20 Ne, 21 Ne, and 22 Ne. In addition, 17 radioactive isotopes have been discovered, ranging from 15 Ne to 34 Ne, all short-lived. The longest-lived is 24 Ne with a half-life of 3.38(2) min. All others are under a minute, most under a second.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
A chart or table of nuclides maps the nuclear, or radioactive, behavior of nuclides, as it distinguishes the isotopes of an element.It contrasts with a periodic table, which only maps their chemical behavior, since isotopes (nuclides that are variants of the same element) do not differ chemically to any significant degree, with the exception of hydrogen.
Sodium-23 is an isotope of sodium with an atomic mass of 22.98976928. It is the only stable isotope of sodium and also the only primordial isotope. Because of its abundance, sodium-23 is used in nuclear magnetic resonance in various research fields, including materials science and battery research. [ 8 ]
This explains that beta decay is energetically favorable for neutron-rich nuclides, and positron decay is favorable for strongly neutron-deficient nuclides. Both decay modes do not change the mass number, hence an original nucleus and its daughter nucleus are isobars. In both aforementioned cases, a heavier nucleus decays to its lighter isobar.
Besides SF, other theoretical decay routes for heavier elements include: [10] alpha decay – 70 heavy nuclides (the lightest two are cerium-142 and neodymium-143) double beta decay – 55 nuclides; beta decay – tantalum-180m; electron capture – tellurium-123, tantalum-180m; double electron capture; isomeric transition – tantalum-180m