Search results
Results from the WOW.Com Content Network
The most fundamental concept in chemistry is the law of conservation of mass, which states that there is no detectable change in the quantity of matter during an ordinary chemical reaction. Modern physics shows that it is actually energy that is conserved, and that energy and mass are related ; a concept which becomes important in nuclear ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 14 January 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws ...
The first law of thermodynamics states that, when energy passes into or out of a system (as work, heat, or matter), the system's internal energy changes in accordance with the law of conservation of energy. The second law of thermodynamics states that in a natural thermodynamic process, the sum of the entropies of the interacting thermodynamic ...
All of the conservation laws listed above are local conservation laws. A local conservation law is expressed mathematically by a continuity equation, which states that the change in the quantity in a volume is equal to the total net "flux" of the quantity through the surface of the volume. The following sections discuss continuity equations in ...
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes. The law distinguishes two principal forms of energy transfer, heat and thermodynamic work , that modify a thermodynamic system containing a constant amount of matter.
For example, in chemical reactions, the mass of the chemical components before the reaction is equal to the mass of the components after the reaction. Thus, during any chemical reaction and low-energy thermodynamic processes in an isolated system, the total mass of the reactants, or starting materials, must be equal to the mass of the products.
It follows from the second law of thermodynamics that the entropy of a system that is not isolated may decrease. An air conditioner, for example, may cool the air in a room, thus reducing the entropy of the air of that system. The heat expelled from the room (the system), which the air conditioner transports and discharges to the outside air ...
Continuity equations are a stronger, local form of conservation laws. For example, a weak version of the law of conservation of energy states that energy can neither be created nor destroyed—i.e., the total amount of energy in the universe is fixed. This statement does not rule out the possibility that a quantity of energy could disappear ...