Search results
Results from the WOW.Com Content Network
Glucocorticoid deficiency 1 is an adrenocortical failure characterized by low levels of plasma cortisol produced by the adrenal gland despite high levels of plasma ACTH. This is an inherited disorder with several different causes which define the type.
Glucocorticoid deficiency can be caused by inherited genetic disorders that affect the production of cortisol in the adrenal glands, such as familial glucocorticoid deficiency (FGD). [3] FGD is a group of monogenic recessive disorders caused by disease-causing variants in genes involved in cortisol biosynthesis. [ 4 ]
The mutations in the MRAP gene caused the congenital disorder familial glucocorticoid deficiency type 2 (FGD-2). FGD-2 is an autosomal recessive disease with early childhood onset of recurrent infections, hypoglycaemia, skin hyperpigmentation, and failure to thrive due to low glucocorticoids levels. If left untreated, it could be fatal.
Individuals who have generalized glucocorticoid resistance may exhibit biochemical hypercortisolism in the absence of Cushing's syndrome symptoms. [6] The condition's clinical phenotype varies from cases with no symptoms to signs of excess mineralocorticoids in the body such as hypokalemic alkalosis and hypertension and/or androgen excess, including oligospermia in males, menstrual ...
The glucocorticoid receptor (GR or GCR) also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1) is the receptor to which cortisol and other glucocorticoids bind. The GR is expressed in almost every cell in the body and regulates genes controlling the development , metabolism , and immune response .
The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 ( GRIP1 ), steroid receptor coactivator-2 ( SRC-2 ), or transcriptional mediators/intermediary factor 2 ( TIF2 ).
The Phase Response Curve operates under the following criteria and must occur to prove that phase resetting is the cause of the behavior: An oscillation must already be occurring before it can reset in its phase. This implies that resetting in response to a stimulus can only occur if the oscillation pre-existed before the reset.
Familial MDS/AML is an inherited predisposition to develop MDS, i.e. a disorder characterized by the development of a genetically distinct subpopulation (i.e. clone) of bone marrow hematopoietic stem cells, decreased levels of one or more types of circulating blood cells, and an increased risk of progressing to leukemia, particularly AML. [10]