Search results
Results from the WOW.Com Content Network
Trachtenberg system. The Trachtenberg system is a system of rapid mental calculation. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. It was developed by the Ukrainian engineer Jakow Trachtenberg in order to keep his mind occupied while being in a Nazi concentration ...
Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.
A multiplication algorithm is an algorithm (or method) to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Numerous algorithms are known and there has been much research into the topic. The oldest and simplest method, known since antiquity as long multiplication or grade-school ...
The Karatsuba algorithm is a fast multiplication algorithm. It was discovered by Anatoly Karatsuba in 1960 and published in 1962. [1][2][3] It is a divide-and-conquer algorithm that reduces the multiplication of two n -digit numbers to three multiplications of n /2-digit numbers and, by repeating this reduction, to at most single-digit ...
Casting out nines. Arithmetic procedure of verifying operations using modulo characteristics of digit 9. Casting out nines is any of three arithmetical procedures: [1] Adding the decimal digits of a positive whole number, while optionally ignoring any 9s or digits which sum to 9 or a multiple of 9. The result of this procedure is a number which ...
e. Multiplication (often denoted by the cross symbol ×, by the mid-line dot operator ⋅, by juxtaposition, or, on computers, by an asterisk *) is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.
Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations. According to The Complete Book of Chisanbop[3] by Hang Young Pai, chisanbop was created in the 1940s in Korea by Sung Jin Pai ...
For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.