Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
find_character(string,char) returns integer Description Returns the position of the start of the first occurrence of the character char in string. If the character is not found most of these routines return an invalid index value – -1 where indexes are 0-based, 0 where they are 1-based – or some value to be interpreted as Boolean FALSE.
If control exits the function without a return value having been explicitly specified, the function returns the default value for the return type. Sub Main(««ByVal »args() As String») instructions
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
Python uses the + operator for string concatenation. Python uses the * operator for duplicating a string a specified number of times. The @ infix operator is intended to be used by libraries such as NumPy for matrix multiplication. [104] [105] The syntax :=, called the "walrus operator", was introduced in Python 3.8. It assigns values to ...
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2]
Each symbol type is represented by a single character. For example, symbol table entries representing initialized data are denoted by the character "d" and symbol table entries for functions have the symbol type "t" (because executable code is located in the text section of an object file). Additionally, the capitalization of the symbol type ...
The Boyer–Moore algorithm searches for occurrences of P in T by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are n − m + 1 {\displaystyle n-m+1} ), Boyer–Moore uses information gained by preprocessing P to skip as many alignments as possible.