enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    v. t. e. In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function.

  4. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.

  5. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  7. Universal Taylor series - Wikipedia

    en.wikipedia.org/wiki/Universal_Taylor_series

    Universal Taylor series. A universal Taylor series is a formal power series , such that for every continuous function on , if , then there exists an increasing sequence of positive integers such that In other words, the set of partial sums of is dense (in sup-norm) in , the set of continuous functions on that is zero at origin. [ 1]

  8. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The original proof is based on the Taylor series expansions of the exponential function e z (where z is a complex number) and of sin x and cos x for real numbers x . In fact, the same proof shows that Euler's formula is even valid for all complex numbers x.

  9. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    A similar series exists for exp(ψ(x)) which starts with ⁡ (). If one calculates the asymptotic series for ψ(x+1/2) it turns out that there are no odd powers of x (there is no x −1 term). This leads to the following asymptotic expansion, which saves computing terms of even order.