Search results
Results from the WOW.Com Content Network
In mathematics, especially the usage of linear algebra in mathematical physics and differential geometry, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving brevity.
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is
The gradient of the function f(x,y) = −(cos 2 x + cos 2 y) 2 depicted as a projected vector field on the bottom plane. The gradient (or gradient vector field) of a scalar function f(x 1, x 2, x 3, …, x n) is denoted ∇f or ∇ → f where ∇ denotes the vector differential operator, del. The notation grad f is also commonly used to ...
For compactness and convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions ...
Covariant vectors, on the other hand, have units of one-over-distance (as in a gradient) and transform in the same way as the coordinate system. For example, in changing from meters to millimeters, the coordinate units become smaller and the number measuring a gradient will also become smaller: 1 Kelvin per m becomes 0.001 Kelvin per mm.
If ,, are the contravariant basis vectors in a curvilinear coordinate system, with coordinates of points denoted by (,,), then the gradient of the tensor field is given by (see [3] for a proof.) = From this definition we have the following relations for the gradients of a scalar field ϕ {\displaystyle \phi } , a vector field v , and a second ...
where (g jk) is the inverse of the matrix (g jk), defined as (using the Kronecker delta, and Einstein notation for summation) g ji g ik = δ j k. Although the Christoffel symbols are written in the same notation as tensors with index notation, they do not transform like tensors under a change of coordinates.