Search results
Results from the WOW.Com Content Network
The phenomenological equation which describes Harper–Dorn creep is = where ρ 0 is dislocation density (constant for Harper–Dorn creep), D v is the diffusivity through the volume of the material, G is the shear modulus and b is the Burgers vector, σ s, and n is the stress exponent which varies between 1 and 3.
F.R. Larson and J. Miller proposed that creep rate could adequately be described by the Arrhenius type equation: r = A ⋅ e − Δ H / ( R ⋅ T ) {\displaystyle r=A\cdot e^{-\Delta H/(R\cdot T)}} Where r is the creep process rate, A is a constant, R is the universal gas constant , T is the absolute temperature , and Δ H {\displaystyle \Delta ...
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
A hyperelastic or Green elastic material [1] is a type of constitutive model for ideally elastic material for which the stress–strain relationship derives from a strain energy density function. The hyperelastic material is a special case of a Cauchy elastic material .
This model is adopted when metals and alloys are at medium and higher temperatures and wood under high loads. The responses for strain hardening, creep, and relaxation tests of such a material are shown in Figure 9. Figure 9. The response of elastoviscoplastic hardening solid to hardening, creep and relaxation tests.
Schematic diagram of Burgers material, Maxwell representation. Given that one Maxwell material has an elasticity and viscosity , and the other Maxwell material has an elasticity and viscosity , the Burgers model has the constitutive equation
The concept of a continuum underlies the mathematical framework for studying large-scale forces and deformations in materials. Although materials are composed of discrete atoms and molecules, separated by empty space or microscopic cracks and crystallographic defects, physical phenomena can often be modeled by considering a substance distributed throughout some region of space.
In materials science, Coble creep, a form of diffusion creep, is a mechanism for deformation of crystalline solids. Contrasted with other diffusional creep mechanisms, Coble creep is similar to Nabarro–Herring creep in that it is dominant at lower stress levels and higher temperatures than creep mechanisms utilizing dislocation glide. [ 1 ]