enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    A mass m attached to a spring of spring constant k exhibits simple harmonic motion in closed space. The equation for describing the period: = shows the period of oscillation is independent of the amplitude, though in practice the amplitude should be small. The above equation is also valid in the case when an additional constant force is being ...

  3. Restoring force - Wikipedia

    en.wikipedia.org/wiki/Restoring_force

    The restoring force is a function only of position of the mass or particle, and it is always directed back toward the equilibrium position of the system. The restoring force is often referred to in simple harmonic motion. The force responsible for restoring original size and shape is called the restoring force. [1] [2]

  4. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    It could be swung from either pivot, with the knife blades supported on agate plates. Rather than make one pivot adjustable, he attached the pivots a meter apart and instead adjusted the periods with a moveable weight on the pendulum rod (b,c). In operation, the pendulum is hung in front of a precision clock, and the period timed, then turned ...

  5. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]

  6. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.

  7. Oscillation - Wikipedia

    en.wikipedia.org/wiki/Oscillation

    The spring-mass system illustrates some common features of oscillation, namely the existence of an equilibrium and the presence of a restoring force which grows stronger the further the system deviates from equilibrium. In the case of the spring-mass system, Hooke's law states that the restoring force of a spring is: =

  8. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    A mass suspended by a spring is the classical example of a harmonic oscillator. A mass m attached to the end of a spring is a classic example of a harmonic oscillator. By pulling slightly on the mass and then releasing it, the system will be set in sinusoidal oscillating motion about the equilibrium

  9. Inverted pendulum - Wikipedia

    en.wikipedia.org/wiki/Inverted_pendulum

    The mass of the cart and the point mass at the end of the rod are denoted by M and m. The rod has a length l. The pendulum is assumed to consist of a point mass, of mass , affixed to the end of a massless rigid rod, of length , attached to a pivot point at the end opposite the point mass.