Search results
Results from the WOW.Com Content Network
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
Disodium hydrogen arsenate is highly toxic. The salt is the conjugate base of arsenic acid. It is a white, water-soluble solid. [1] Being a diprotic acid, its acid-base properties is described by two equilibria: H 2 AsO − 4 + H 2 O ⇌ HAsO 2− 4 + H 3 O + (pK a2 = 6.94) HAsO 2− 4 + H 2 O ⇌ AsO 3− 4 + H 3 O + (pK a3 = 11.5)
This is a list of chemical elements and their atomic properties, ordered by atomic number (Z). Since valence electrons are not clearly defined for the d-block and f-block elements, there not being a clear point at which further ionisation becomes unprofitable, a purely formal definition as number of electrons in the outermost shell has been used.
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
Selenous acid is analogous to sulfurous acid, but it is more readily isolated. Selenous acid is easily formed upon the addition of selenium dioxide to water. As a crystalline solid, the compound can be seen as pyramidal molecules that are interconnected with hydrogen bonds. In solution it is a diprotic acid: [3] H 2 SeO 3 ⇌ H + + HSeO − 3 ...
3 (i.e. the first acid dissociation constant for carbonic acid), K 2 is the equilibrium constant for the reaction HCO − 3 ⇌ H + + CO 2− 3 (i.e. the second acid dissociation constant for carbonic acid), and DIC is the (unchanging) total concentration of dissolved inorganic carbon in the system, i.e. [CO 2] + [HCO − 3] + [CO 2− 3].
The acid itself is added to foods as an antioxidant E334 and to impart its distinctive sour taste. Naturally occurring tartaric acid is a useful raw material in organic synthesis. Tartaric acid, an alpha-hydroxy-carboxylic acid, is diprotic and aldaric in acid characteristics and is a dihydroxyl derivative of succinic acid.
The systematic IUPAC name is not always the preferred IUPAC name, for example, lactic acid is a common, and also the preferred, name for what systematic rules call 2-hydroxypropanoic acid. This list is ordered by the number of carbon atoms in a carboxylic acid.