Search results
Results from the WOW.Com Content Network
The sum of squares of residuals, also called the residual sum of squares: The total sum of squares (proportional to the variance of the data): The most general definition of the coefficient of determination is. In the best case, the modeled values exactly match the observed values, which results in and R2 = 1.
In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. [1][2][3][4][5] That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non ...
In statistics, linear regression is a model that estimates the linear relationship between a scalar response (dependent variable) and one or more explanatory variables (regressor or independent variable). A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple ...
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the ...
Variance inflation factor. In statistics, the variance inflation factor (VIF) is the ratio (quotient) of the variance of a parameter estimate when fitting a full model that includes other parameters to the variance of the parameter estimate if the model is fit with only the parameter on its own. [1] The VIF provides an index that measures how ...
Reduced chi-squared statistic. In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation (MSWD) in isotopic dating [1] and variance of unit weight in the context of weighted least squares. [2][3] Its square root is called regression standard error, [4 ...
Pseudo-R-squared values are used when the outcome variable is nominal or ordinal such that the coefficient of determination R2 cannot be applied as a measure for goodness of fit and when a likelihood function is used to fit a model. In linear regression, the squared multiple correlation, R2 is used to assess goodness of fit as it represents the ...
Residual sum of squares. In statistics, the residual sum of squares (RSS), also known as the sum of squared residuals (SSR) or the sum of squared estimate of errors (SSE), is the sum of the squares of residuals (deviations predicted from actual empirical values of data). It is a measure of the discrepancy between the data and an estimation ...