Search results
Results from the WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Any integer with absolute value less than 2 24 can be exactly represented in the single-precision format, and any integer with absolute value less than 2 53 can be exactly represented in the double-precision format. Furthermore, a wide range of powers of 2 times such a number can be represented.
C and C++ perform such promotion for objects of Boolean, character, wide character, enumeration, and short integer types which are promoted to int, and for objects of type float, which are promoted to double. Unlike some other type conversions, promotions never lose precision or modify the value stored in the object. In Java:
rounding rules: properties to be satisfied when rounding numbers during arithmetic and conversions; operations: arithmetic and other operations (such as trigonometric functions) on arithmetic formats; exception handling: indications of exceptional conditions (such as division by zero, overflow, etc.)
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
From binary32 to bfloat16. When bfloat16 was first introduced as a storage format, [15] the conversion from IEEE 754 binary32 (32-bit floating point) to bfloat16 is truncation (round toward 0). Later on, when it becomes the input of matrix multiplication units, the conversion can have various rounding mechanisms depending on the hardware platforms.
It returns the exact value of x–(round(x/y)·y). Round to nearest integer. For undirected rounding when halfway between two integers the even integer is chosen. Comparison operations. Besides the more obvious results, IEEE 754 defines that −∞ = −∞, +∞ = +∞ and x ≠ NaN for any x (including NaN).
Fastest integer types that are guaranteed to be the fastest integer type available in the implementation, that has at least specified number n of bits. Guaranteed to be specified for at least N=8,16,32,64. Pointer integer types that are guaranteed to be able to hold a pointer. Included only if it is available in the implementation.