Search results
Results from the WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [ 8 ] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), and therefore has all ...
This article uses the inclusive definition and considers parallelograms as special cases of a trapezoid. This is also advocated in the taxonomy of quadrilaterals. Under the inclusive definition, all parallelograms (including rhombuses, squares and non-square rectangles) are trapezoids. Rectangles have mirror symmetry on mid-edges; rhombuses ...
Informally: "a box or oblong" (including a square). Square (regular quadrilateral): all four sides are of equal length (equilateral), and all four angles are right angles. An equivalent condition is that opposite sides are parallel (a square is a parallelogram), and that the diagonals perpendicularly bisect each other and are of equal length.
For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.
The first property implies that every rhombus is a parallelogram. A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the ...
All equilateral kites are rhombi, and all equiangular kites are squares. When classified partitionally, rhombi and squares would not be kites, because they belong to a different class of quadrilaterals; similarly, the right kites discussed below would not be kites. The remainder of this article follows a hierarchical classification; rhombi ...
A shape is a circle because it looks like a sun; a shape is a rectangle because it looks like a door or a box; and so on. A square seems to be a different sort of shape than a rectangle, and a rhombus does not look like other parallelograms, so these shapes are classified completely separately in the child’s mind.