enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  3. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:

  4. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method for representing numbers that uses only two symbols for the natural numbers: typically "0" and "1" . A binary number may also refer to a rational number that has a finite representation in the binary numeral system, that is, the quotient of an ...

  5. Binary integer decimal - Wikipedia

    en.wikipedia.org/wiki/Binary_Integer_Decimal

    In the decimal encoding, it is encoded as a series of p decimal digits (using the densely packed decimal (DPD) encoding). This makes conversion to decimal form efficient, but requires a specialized decimal ALU to process. In the binary integer decimal (BID) encoding, it is encoded as a binary number.

  6. Two-out-of-five code - Wikipedia

    en.wikipedia.org/wiki/Two-out-of-five_code

    A two-out-of-five code is a constant-weight code that provides exactly ten possible combinations of two bits, and is thus used for representing the decimal digits using five bits. [1] Each bit is assigned a weight, such that the set bits sum to the desired value, with an exception for zero.

  7. Binary code - Wikipedia

    en.wikipedia.org/wiki/Binary_code

    The modern binary number system, the basis for binary code, is an invention by Gottfried Leibniz in 1689 and appears in his article Explication de l'Arithmétique Binaire (English: Explanation of the Binary Arithmetic) which uses only the characters 1 and 0, and some remarks on its usefulness. Leibniz's system uses 0 and 1, like the modern ...

  8. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base .) Analogous to scientific notation , where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point".

  9. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    10001 is the binary, not decimal, representation of the desired result, but the most significant 1 (the "carry") cannot fit in a 4-bit binary number. In BCD as in decimal, there cannot exist a value greater than 9 (1001) per digit. To correct this, 6 (0110) is added to the total, and then the result is treated as two nibbles: