enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    If momentum is to be conserved over the volume V over a region Q, changes in the momentum of matter through the Lorentz force must be balanced by changes in the momentum of the electromagnetic field and outflow of momentum. If P mech is the momentum of all the particles in Q, and the particles are treated as a continuum, then Newton's second ...

  3. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Since m 0 does not change from frame to frame, the energy–momentum relation is used in relativistic mechanics and particle physics calculations, as energy and momentum are given in a particle's rest frame (that is, E ′ and p ′ as an observer moving with the particle would conclude to be) and measured in the lab frame (i.e. E and p as ...

  4. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    This has the advantage that kinetic momentum can be measured experimentally whereas canonical momentum cannot. Notice that the Hamiltonian ( total energy ) can be viewed as the sum of the relativistic energy (kinetic+rest) , ⁠ E = γ m c 2 {\displaystyle E=\gamma mc^{2}} ⁠ , plus the potential energy , ⁠ V = q φ {\displaystyle V=q\varphi

  5. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    This equation states that the kinetic energy (E k) is equal to the integral of the dot product of the momentum (p) of a body and the infinitesimal change of the velocity (v) of the body. It is assumed that the body starts with no kinetic energy when it is at rest (motionless).

  6. Uncertainty principle - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_principle

    Top: If wavelength λ is unknown, so are momentum p, wave-vector k and energy E (de Broglie relations). As the particle is more localized in position space, Δx is smaller than for Δp x. Bottom: If λ is known, so are p, k, and E. As the particle is more localized in momentum space, Δp is smaller than for Δx.

  7. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    Although the quantity p kin is the "physical momentum", in that it is the quantity to be identified with momentum in laboratory experiments, it does not satisfy the canonical commutation relations; only the canonical momentum does that. This can be seen as follows.

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]

  9. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.