enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    The same vector can be represented in two different bases (purple and red arrows). In mathematics, a set B of vectors in a vector space V is called a basis (pl.: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B.

  3. Standard basis - Wikipedia

    en.wikipedia.org/wiki/Standard_basis

    Every vector a in three dimensions is a linear combination of the standard basis vectors i, j and k.. In mathematics, the standard basis (also called natural basis or canonical basis) of a coordinate vector space (such as or ) is the set of vectors, each of whose components are all zero, except one that equals 1. [1]

  4. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    A subset of a vector space is a basis if its elements are linearly independent and span the vector space. [13] Every vector space has at least one basis, or many in general (see Basis (linear algebra) § Proof that every vector space has a basis). [14]

  5. Change of basis - Wikipedia

    en.wikipedia.org/wiki/Change_of_basis

    A function that has a vector space as its domain is commonly specified as a multivariate function whose variables are the coordinates on some basis of the vector on which the function is applied. When the basis is changed, the expression of the function is changed.

  6. Dual basis - Wikipedia

    en.wikipedia.org/wiki/Dual_basis

    The association of a dual basis with a basis gives a map from the space of bases of V to the space of bases of V ∗, and this is also an isomorphism. For topological fields such as the real numbers, the space of duals is a topological space , and this gives a homeomorphism between the Stiefel manifolds of bases of these spaces.

  7. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    The row space of this matrix is the vector space spanned by the row vectors. The column vectors of a matrix. The column space of this matrix is the vector space spanned by the column vectors. In linear algebra, the column space (also called the range or image) of a matrix A is the span (set of all possible linear combinations) of its column ...

  8. Examples of vector spaces - Wikipedia

    en.wikipedia.org/wiki/Examples_of_vector_spaces

    The simplest example of a vector space is the trivial one: {0}, which contains only the zero vector (see the third axiom in the Vector space article). Both vector addition and scalar multiplication are trivial. A basis for this vector space is the empty set, so that {0} is the 0-dimensional vector space over F.

  9. Coordinate vector - Wikipedia

    en.wikipedia.org/wiki/Coordinate_vector

    In linear algebra, a coordinate vector is a representation of a vector as an ordered list of numbers (a tuple) that describes the vector in terms of a particular ordered basis. [1] An easy example may be a position such as (5, 2, 1) in a 3-dimensional Cartesian coordinate system with the basis as the axes of this system.