Search results
Results from the WOW.Com Content Network
Similarly, in a series, any finite rearrangements of terms of a series does not change the limit of the partial sums of the series and thus does not change the sum of the series: for any finite rearrangement, there will be some term after which the rearrangement did not affect any further terms: any effects of rearrangement can be isolated to ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The sum of the members of a finite arithmetic progression is called an arithmetic series. For example, consider the sum: + + + + = This sum can be found quickly by ...
A series is convergent (or converges) if and only if the sequence (,,, …) of its partial sums tends to a limit; that means that, when adding one after the other in the order given by the indices, one gets
If the sum is of the form = ()where ƒ is a smooth function, we could use the Euler–Maclaurin formula to convert the series into an integral, plus some corrections involving derivatives of S(x), then for large values of a you could use "stationary phase" method to calculate the integral and give an approximate evaluation of the sum.
In the mathematics of convergent and divergent series, Euler summation is a summation method. That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original ...
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.