enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    If it is 1, then n may be prime. If a n −1 (modulo n) is 1 but n is not prime, then n is called a pseudoprime to base a. In practice, if a n −1 (modulo n) is 1, then n is usually prime. But here is a counterexample: if n = 341 and a = 2, then even though 341 = 11·31 is composite.

  3. Lucas primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas_primality_test

    In computational number theory, the Lucas test is a primality test for a natural number n; it requires that the prime factors of n − 1 be already known. [ 1 ] [ 2 ] It is the basis of the Pratt certificate that gives a concise verification that n is prime.

  4. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/Miller–Rabin_primality_test

    Input #1: b, the number of bits of the result Input #2: k, the number of rounds of testing to perform Output: a strong probable prime n while True: pick a random odd integer n in the range [2 b −1 , 2 b −1] if the Miller–Rabin test with inputs n and k returns “ probably prime ” then return n

  5. Fermat primality test - Wikipedia

    en.wikipedia.org/wiki/Fermat_primality_test

    There are infinitely many Fermat pseudoprimes to any given basis a > 1. [1]: Theorem 1 Even worse, there are infinitely many Carmichael numbers. [2] These are numbers for which all values of with ⁡ (,) = are Fermat liars. For these numbers, repeated application of the Fermat primality test performs the same as a simple random search for factors.

  6. Lucas–Lehmer primality test - Wikipedia

    en.wikipedia.org/wiki/Lucas–Lehmer_primality_test

    The Mersenne number M 3 = 2 3 −1 = 7 is prime. The Lucas–Lehmer test verifies this as follows. Initially s is set to 4 and then is updated 3−2 = 1 time: s ← ((4 × 4) − 2) mod 7 = 0. Since the final value of s is 0, the conclusion is that M 3 is prime. On the other hand, M 11 = 2047 = 23 × 89 is not prime

  7. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  8. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  9. Probable prime - Wikipedia

    en.wikipedia.org/wiki/Probable_prime

    An Euler probable prime to base a is an integer that is indicated prime by the somewhat stronger theorem that for any prime p, a (p−1)/2 equals () modulo p, where () is the Jacobi symbol. An Euler probable prime which is composite is called an Euler–Jacobi pseudoprime to base a. The smallest Euler-Jacobi pseudoprime to base 2 is 561.