Search results
Results from the WOW.Com Content Network
In mathematics, particularly in linear algebra and applications, matrix analysis is the study of matrices and their algebraic properties. [1] Some particular topics out of many include; operations defined on matrices (such as matrix addition, matrix multiplication and operations derived from these), functions of matrices (such as matrix exponentiation and matrix logarithm, and even sines and ...
In mathematics, the spectrum of a matrix is the set of its eigenvalues. [ 1 ] [ 2 ] [ 3 ] More generally, if T : V → V {\displaystyle T\colon V\to V} is a linear operator on any finite-dimensional vector space , its spectrum is the set of scalars λ {\displaystyle \lambda } such that T − λ I {\displaystyle T-\lambda I} is not invertible .
In many applications, the matrix elements belong to a field, although the tropical semiring is also a common choice for graph shortest path problems. [15] Even in the case of matrices over fields, the product is not commutative in general, although it is associative and is distributive over matrix addition. The identity matrices (which are the ...
The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.
In turn, the Bloch-Messiah decomposition means that such an arbitrary Gaussian transformation can be represented as a set of two passive linear-optical interferometers (corresponding to orthogonal matrices O and O' ) intermitted by a layer of active non-linear squeezing transformations (given in terms of the matrix D). [11]
A square matrix of order 4. The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns.
An n-by-n square matrix A is called invertible (also nonsingular, nondegenerate or rarely regular) if there exists an n-by-n square matrix B such that = =, where I n denotes the n-by-n identity matrix and the multiplication used is ordinary matrix multiplication. [1]
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.