Search results
Results from the WOW.Com Content Network
Simpson's rules are used to calculate the volume of lifeboats, [6] and by surveyors to calculate the volume of sludge in a ship's oil tanks. For instance, in the latter, Simpson's 3rd rule is used to find the volume between two co-ordinates. To calculate the entire area / volume, Simpson's first rule is used. [7]
The volume of a ship's hull below the waterline (solid), divided by the volume of a rectangular solid (lines) of the same length, height and width, determine a ship's block coefficient. Coefficients [5] help compare hull forms as well: Block coefficient (C b) is the volume (V) divided by the L WL × B WL × T WL. If you draw a box around the ...
The ship's hydrostatic tables show the corresponding volume displaced. [4] To calculate the weight of the displaced water, it is necessary to know its density. Seawater (1,025 kg/m 3) is more dense than fresh water (1,000 kg/m 3); [5] so a ship will ride higher in salt water than in fresh. The density of water also varies with temperature.
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
However, once the ship is inclined to any degree (a wave strikes it for example), the fluid in the bilge moves to the lower side. This results in a list. Stability is also reduced in flooding when, for example, an empty tank is filled with seawater. The lost buoyancy of the tank results in that section of the ship lowering into the water slightly.
This phenomenon is caused by the water flow which accelerates as it passes between the hull and the seabed in confined waters, the increase in water velocity causing a resultant reduction in pressure. Squat effect from a combination of vertical sinkage and a change of trim may cause the vessel to dip towards the stern or towards the bow. This ...
This page was last edited on 30 September 2024, at 19:36 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Used mainly to determine the minimum water depth for safe passage of a vessel and to calculate the vessel's displacement (obtained from ship's stability tables) so as to determine the mass of cargo on board. Draft, Air – Air Draft/Draught is the distance from the water line to the highest point on a ship (including antennas) while it is ...