Search results
Results from the WOW.Com Content Network
The Bosch reaction is a catalytic chemical reaction between carbon dioxide (CO 2) and hydrogen (H 2) that produces elemental carbon (C,graphite), water, and a 10% return of invested heat. CO 2 is usually reduced by H 2 to carbon in presence of a catalyst (e.g. iron (Fe)) and requires a temperature level of 530–730 °C (986–1,346 °F).
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]
By Le Chatelier's principle, the release of CO 2 from the lungs pushes the reaction above to the left, causing carbonic anhydrase to form CO 2 until all excess protons are removed. Bicarbonate concentration is also further regulated by renal compensation , the process by which the kidneys regulate the concentration of bicarbonate ions by ...
This is sometimes called the reverse water–gas shift reaction. [20] Water gas is defined as a fuel gas consisting mainly of carbon monoxide (CO) and hydrogen (H 2). The term 'shift' in water–gas shift means changing the water gas composition (CO:H 2) ratio. The ratio can be increased by adding CO 2 or reduced by adding steam to the reactor.
Simulations can be as simple as the mixing of two substances in a tank, or as complex as an entire alumina refinery. [ 2 ] Chemical process modeling requires a knowledge of the properties of the chemicals involved in the simulation, [ 1 ] as well as the physical properties and characteristics of the components of the system, such as tanks ...
Chemical reaction network theory is an area of applied mathematics that attempts to model the behaviour of real-world chemical systems. Since its foundation in the 1960s, it has attracted a growing research community, mainly due to its applications in biochemistry and theoretical chemistry .
The laminar finite rate model computes the chemical source terms using the Arrhenius expressions and ignores turbulence fluctuations. This model provides with the exact solution for laminar flames but gives inaccurate solution for turbulent flames, in which turbulence highly affects the chemistry reaction rates, due to highly non-linear Arrhenius chemical kinetics.