Search results
Results from the WOW.Com Content Network
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:
The adenylate energy charge is an index used to measure the energy status of biological cells.. ATP or Mg-ATP is the principal molecule for storing and transferring energy in the cell : it is used for biosynthetic pathways, maintenance of transmembrane gradients, movement, cell division, etc...
Intuitively one may understand these limits as follows: if an ion is only found outside a cell, then the flux is Ohmic (proportional to voltage) when the voltage causes the ion to flow into the cell, but no voltage could cause the ion to flow out of the cell, since there are no ions inside the cell in the first place.
Since the valence has already been accounted for above, the charge q A of each ion in the equation above, therefore, should be interpreted as +1 or -1 depending on the polarity of the ion. There is such a current associated with every type of ion that can cross the membrane; this is because each type of ion would require a distinct membrane ...
This is the energy (i.e. work) per charge which is required to move a (very small) positive charge at constant velocity across the cell membrane from the exterior to the interior. (If the charge is allowed to change velocity, the change of kinetic energy and production of radiation [ 1 ] must be taken into account.)
A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes. [1]A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
NKA is powered by the hydrolysis of ATP into ADP and an inorganic phosphate; for every molecule of ATP hydrolized, three Na + are transported outside and two K + are transported inside the cell. This makes the inside of the cell more negative than the outside and more specifically generates a membrane potential V membrane of about −60 mV. [5]