Search results
Results from the WOW.Com Content Network
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:
Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms.
In plasma physics, ambipolar diffusion is related to the concept of quasineutrality.In most plasmas, the forces acting on the ions are different from those acting on the electrons, so naively one would expect one species to be transported faster than the other, whether by diffusion or convection or some other process.
There are two rates which determine the current-voltage relationship for an electrode. First is the rate of the chemical reaction at the electrode, which consumes reactants and produces products. This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by ...
The drift current, by contrast, is due to the motion of charge carriers due to the force exerted on them by an electric field. Diffusion current can be in the same or opposite direction of a drift current. The diffusion current and drift current together are described by the drift–diffusion equation. [1]
The adenylate energy charge is an index used to measure the energy status of biological cells.. ATP or Mg-ATP is the principal molecule for storing and transferring energy in the cell : it is used for biosynthetic pathways, maintenance of transmembrane gradients, movement, cell division, etc...
The elements of the rate vector will be rate equations that are functions of one or more species and parameters, p. In the example, these might be simple mass-action rate laws such as v 2 = k 2 x 1 {\displaystyle v_{2}=k_{2}x_{1}} where k 2 {\displaystyle k_{2}} is the rate constant parameter.
This is the energy (i.e. work) per charge which is required to move a (very small) positive charge at constant velocity across the cell membrane from the exterior to the interior. (If the charge is allowed to change velocity, the change of kinetic energy and production of radiation [ 1 ] must be taken into account.)