Search results
Results from the WOW.Com Content Network
While the partial sums of the reciprocals of the primes eventually exceed any integer value, they never equal an integer. One proof [6] is by induction: The first partial sum is 1 / 2 , which has the form odd / even . If the n th partial sum (for n ≥ 1) has the form odd / even , then the (n + 1) st sum is
The sum of the reciprocals of the primes of the form 4n + 1 is divergent. By Fermat's theorem on sums of two squares , it follows that the sum of reciprocals of numbers of the form a 2 + b 2 , {\displaystyle \ a^{2}+b^{2}\ ,} where a and b are non-negative integers, not both equal to 0 , diverges, with or without repetition.
A prime quadruplet is a pair of two twin prime pairs, separated by a distance of 4 (the smallest possible distance). The first prime quadruplets are (5, 7, 11, 13), (11, 13, 17, 19), (101, 103, 107, 109). Brun's constant for prime quadruplets, denoted by B 4, is the sum of the reciprocals of all prime quadruplets:
The reciprocals of prime numbers produce a divergent series (so the set of primes is "large"; see divergence of the sum of the reciprocals of the primes): 1 2 + 1 3 + 1 5 + 1 7 + 1 11 + 1 13 + ⋯ → ∞ . {\displaystyle {1 \over 2}+{1 \over 3}+{1 \over 5}+{1 \over 7}+{1 \over 11}+{1 \over 13}+\cdots \rightarrow \infty .}
Because it is a divergent series, it should be interpreted as a formal sum, an abstract mathematical expression combining the unit fractions, rather than as something that can be evaluated to a numeric value. There are many different proofs of the divergence of the harmonic series, surveyed in a 2006 paper by S. J. Kifowit and T. A. Stamps. [13]
In the limit, the sum of the reciprocals of the primes < n and the function ln(ln n) are separated by a constant, the Meissel–Mertens constant (labelled M above). The Meissel-Mertens constant (named after Ernst Meissel and Franz Mertens), also referred to as the Mertens constant, Kronecker's constant, Hadamard-de la Vallée-Poussin constant, or the prime reciprocal constant, is a ...
Because the sum of the reciprocals of the primes diverges, the Green–Tao theorem on arithmetic progressions is a special case of the conjecture. The weaker claim that A must contain infinitely many arithmetic progressions of length 3 is a consequence of an improved bound in Roth's theorem .
The reciprocals of prime numbers have been of interest to mathematicians for various reasons. They do not have a finite sum , as Leonhard Euler proved in 1737. Like rational numbers , the reciprocals of primes have repeating decimal representations.