enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Algorithm selection - Wikipedia

    en.wikipedia.org/wiki/Algorithm_Selection

    The algorithm selection problem is mainly solved with machine learning techniques. By representing the problem instances by numerical features f {\displaystyle f} , algorithm selection can be seen as a multi-class classification problem by learning a mapping f i ↦ A {\displaystyle f_{i}\mapsto {\mathcal {A}}} for a given instance i ...

  4. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models, especially in processing long sequences. It is based on the Structured State Space sequence (S4) model. [2] [3] [4]

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    There is a close connection between machine learning and compression. A system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution). Conversely, an optimal compressor can be used for prediction (by finding the symbol that ...

  6. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    Machine learning in environmental metagenomics can help to answer questions related to the interactions between microbial communities and ecosystems, e.g. the work of Xun et al., in 2021 [50] where the use of different machine learning methods offered insights on the relationship among the soil, microbiome biodiversity, and ecosystem stability.

  7. Feature selection - Wikipedia

    en.wikipedia.org/wiki/Feature_selection

    In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]

  8. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. [ 1 ] [ 2 ] It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.

  9. Model selection - Wikipedia

    en.wikipedia.org/wiki/Model_selection

    Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis, this may be the selection of a statistical model from a set of candidate models, given data. In the simplest cases, a pre ...