Search results
Results from the WOW.Com Content Network
Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [ 6 ] ("1-isohedral" is the same as "isohedral".) A monohedral polyhedron or monohedral tiling ( m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions.
Convex regular icosahedron A tensegrity icosahedron. In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces.
Quizlet was founded in 2005 by Andrew Sutherland as a studying tool to aid in memorization for his French class, which he claimed to have "aced". [6] [7] [8] ...
In chemistry, the closo-carboranes are compounds with a shape resembling the regular icosahedron. [28] The crystal twinning with icosahedral shapes also occurs in crystals, especially nanoparticles. [29] Many borides and allotropes of boron such as α-and β-rhombohedral contain boron B 12 icosahedron as a basic structure unit. [30]
Apart from the two infinite series of prismatic and antiprismatic symmetry, rotational icosahedral symmetry or chiral icosahedral symmetry of chiral objects and full icosahedral symmetry or achiral icosahedral symmetry are the discrete point symmetries (or equivalently, symmetries on the sphere) with the largest symmetry groups.
This shape is called a plesiohedron. The tiling generated in this way is isohedral, meaning that it not only has a single prototile ("monohedral") but also that any copy of this tile can be taken to any other copy by a symmetry of the tiling. [1] As with any space-filling polyhedron, the Dehn invariant of a plesiohedron is necessarily zero. [3]
The truncated icosahedron is an Archimedean solid, meaning it is a highly symmetric and semi-regular polyhedron, and two or more different regular polygonal faces meet in a vertex. [5] It has the same symmetry as the regular icosahedron, the icosahedral symmetry , and it also has the property of vertex-transitivity .
Each Catalan solid has constant dihedral angles, meaning the angle between any two adjacent faces is the same. [1] Additionally, two Catalan solids, the rhombic dodecahedron and rhombic triacontahedron, are edge-transitive, meaning their edges are symmetric to each other.