enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  3. Torsion of a curve - Wikipedia

    en.wikipedia.org/wiki/Torsion_of_a_curve

    Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    On the example of a torus knot, the tangent vector T, the normal vector N, and the binormal vector B, along with the curvature κ(s), and the torsion τ(s) are displayed. At the peaks of the torsion function the rotation of the Frenet–Serret frame (T,N,B) around the tangent vector is clearly visible.

  5. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The geodesic curvature k g at a point of a curve c(t), parametrised by arc length, on an oriented surface is defined to be [58] = ¨ (). where n(t) is the "principal" unit normal to the curve in the surface, constructed by rotating the unit tangent vector ċ(t) through an angle of +90°.

  6. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    A normal vector of length one is called a unit normal vector. A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector, which may be used for indicating sides (e.g., interior or exterior).

  7. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface. An explicit expression for the Gaussian curvature in terms of the first fundamental form is provided by the Brioschi formula.

  9. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ 1 and κ 2, at the given point: =.