Search results
Results from the WOW.Com Content Network
A normal vector of length one is called a unit normal vector. A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector, which may be used for indicating sides (e.g., interior or exterior).
Figure 1: Vector relationships for uniform circular motion; vector Ω representing the rotation is normal to the plane of the orbit. For motion in a circle of radius r, the circumference of the circle is C = 2πr.
The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...
The radius of the circle R(s) is called the radius of curvature, and the curvature is the reciprocal of the radius of curvature: = (). The tangent, curvature, and normal vector together describe the second-order behavior of a curve near a point.
A normal vector to the curve at the point is given by ... (product of a circle and the x-axis) yields smooth approximations of one half of a circle (see picture), and ...
The concept of unit circle (the set of all vectors of norm 1) is different in different norms: for the 1-norm, the unit circle is a square oriented as a diamond; for the 2-norm (Euclidean norm), it is the well-known unit circle; while for the infinity norm, it is an axis-aligned square.
In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, ... is a normal vector of the line. The tangent ...
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.