Search results
Results from the WOW.Com Content Network
The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.
where P is the pressure, V is the volume, N is the number of gas molecules, k B is the Boltzmann constant (1.381×10 −23 J·K −1 in SI units) and T is the absolute temperature. These equations are exact only for an ideal gas , which neglects various intermolecular effects (see real gas ).
However, it sometimes refers to the proportionality of the volume of a gas to its absolute temperature at constant pressure. The latter law was published by Gay-Lussac in 1802, [ 2 ] but in the article in which he described his work, he cited earlier unpublished work from the 1780s by Jacques Charles .
In 1968, Anderson developed (∂T/∂P) v =(αK) −1 for the thermal gradient, [7] and its reciprocal correlate the thermal pressure and temperature in a constant volume heating process by (∂P/∂T) v =αK. [8] Note, thermal pressure is the pressure change in a constant volume heating process, and expressed by integration of αK.
If one sets out to determine the specific volume of an ideal gas, such as super heated steam, using the equation ν = RT/P, where pressure is 2500 lbf/in 2, R is 0.596, temperature is 1960 °R. In that case, the specific volume would equal 0.4672 in 3 /lb. However, if the temperature is changed to 1160 °R, the specific volume of the super ...
The volume of gas increases proportionally to absolute temperature and decreases inversely proportionally to pressure, approximately according to the ideal gas law: = where: p is the pressure; V is the volume; n is the amount of substance of gas (moles) R is the gas constant, 8.314 J·K −1 mol −1
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...