enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    The Jacobian determinant is sometimes simply referred to as "the Jacobian". The Jacobian determinant at a given point gives important information about the behavior of f near that point. For instance, the continuously differentiable function f is invertible near a point p ∈ R n if the Jacobian determinant at p is non-zero.

  3. Jacobi eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Jacobi_eigenvalue_algorithm

    Thus one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero. Pseudo-inverse The pseudo inverse of a matrix A {\displaystyle A} is the unique matrix X = A + {\displaystyle X=A^{+}} for which A X {\displaystyle AX} and X A {\displaystyle XA} are symmetric and for which A X A = A , X A X ...

  4. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  5. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations.

  6. Jacobi symbol - Wikipedia

    en.wikipedia.org/wiki/Jacobi_symbol

    So if it is unknown whether a number n is prime or composite, we can pick a random number a, calculate the Jacobi symbol (⁠ a / n ⁠) and compare it with Euler's formula; if they differ modulo n, then n is composite; if they have the same residue modulo n for many different values of a, then n is "probably prime".

  7. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    That is, the Jacobian of the function is used to transform the rows and columns of the variance-covariance matrix of the argument. Note this is equivalent to the matrix expression for the linear case with J = A {\displaystyle \mathrm {J=A} } .

  8. Automatic differentiation - Wikipedia

    en.wikipedia.org/wiki/Automatic_differentiation

    The problem of computing a full Jacobian of f : R n → R m with a minimum number of arithmetic operations is known as the optimal Jacobian accumulation (OJA) problem, which is NP-complete. [20] Central to this proof is the idea that algebraic dependencies may exist between the local partials that label the edges of the graph.

  9. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In vector calculus, the derivative of a vector function y with respect to a vector x whose components represent a space is known as the pushforward (or differential), or the Jacobian matrix. The pushforward along a vector function f with respect to vector v in R n is given by d f ( v ) = ∂ f ∂ v d v . {\displaystyle d\mathbf {f} (\mathbf {v ...