Search results
Results from the WOW.Com Content Network
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
Fine art: Equations-inspired mathematical visual art including mathematical structures. [31] [32] Hill, Anthony: 1930– Fine art: Geometric abstraction in Constructivist art [33] [34] Leonardo da Vinci: 1452–1519: Fine art: Mathematically-inspired proportion, including golden ratio (used as golden rectangles) [19] [35] Longhurst, Robert ...
Many works of art are claimed to have been designed using the golden ratio. However, many of these claims are disputed, or refuted by measurement. [1] The golden ratio, an irrational number, is approximately 1.618; it is often denoted by the Greek letter φ .
Hambidge distinguishes these from rectangles with rational proportions, which he terms static rectangles. [3] According to him, root-2, 3, 4 and 5 rectangles are often found in Gothic and Classical Greek and Roman art, objects and architecture, while rectangles with aspect ratios greater than root-5 are seldom found in human designs. [4]
Rabatment of the rectangle is a compositional technique used as an aid for the placement of objects or the division of space within a rectangular frame, or as an aid for the study of art. Every rectangle contains two implied squares, each consisting of a short side of the rectangle, an equal length along each longer side, and an imaginary ...
Dynamic symmetry is a proportioning system and natural design methodology described in Hambidge's books. The system uses dynamic rectangles, including root rectangles based on ratios such as √ 2, √ 3, √ 5, the golden ratio (φ = 1.618...), its square root (√ φ = 1.272...), and its square (φ 2 = 2.618....), and the silver ratio (=).
Mathematics in art: Albrecht Dürer's copper plate engraving Melencolia I, 1514. Mathematical references include a compass for geometry, a magic square and a truncated rhombohedron, while measurement is indicated by the scales and hourglass. [1] Wireframe drawing [2] of a vase as a solid of revolution [2] by Paolo Uccello. 15th century
Stacking golden rectangles produces golden rectangles anew, and removing or adding squares from golden rectangles leaves rectangles still proportioned in ratio. They can be generated by golden spirals , through successive Fibonacci and Lucas number-sized squares and quarter circles.