Search results
Results from the WOW.Com Content Network
A golden triangle. The ratio a/b is the golden ratio φ. The vertex angle is =.Base angles are 72° each. Golden gnomon, having side lengths 1, 1, and .. A golden triangle, also called a sublime triangle, [1] is an isosceles triangle in which the duplicated side is in the golden ratio to the base side:
The golden ratio has been used to analyze the proportions of natural objects and artificial systems such as financial markets, in some cases based on dubious fits to data. [8] The golden ratio appears in some patterns in nature, including the spiral arrangement of leaves and other parts of vegetation.
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
The golden angle is the angle subtended by the smaller (red) arc when two arcs that make up a circle are in the golden ratio. In geometry, the golden angle is the smaller of the two angles created by sectioning the circumference of a circle according to the golden ratio; that is, into two arcs such that the ratio of the length of the smaller arc to the length of the larger arc is the same as ...
Approximate and true golden spirals: the green spiral is made from quarter-circles tangent to the interior of each square, while the red spiral is a golden spiral, a special type of logarithmic spiral. Overlapping portions appear yellow. The length of the side of a larger square to the next smaller square is in the golden ratio.
A root rectangle is a rectangle in which the ratio of the longer side to the shorter is the square root of an integer, such as √ 2, √ 3, etc. [2] The root-2 rectangle (ACDK in Fig. 10) is constructed by extending two opposite sides of a square to the length of the square's diagonal.
Three mutually perpendicular golden ratio rectangles, with edges connecting their corners, form a regular icosahedron. Another way to construct it is by putting two points on each surface of a cube. In each face, draw a segment line between the midpoints of two opposite edges and locate two points with the golden ratio distance from each midpoint.
Other scholars question whether the golden ratio was known to or used by Greek artists and architects as a principle of aesthetic proportion. [11] Building the Acropolis is calculated to have been started around 600 BC, but the works said to exhibit the golden ratio proportions were created from 468 BC to 430 BC.