Search results
Results from the WOW.Com Content Network
6 1 2 1 1 −1 4 5 9. and would be written in modern notation as 6 1 / 4 , 1 1 / 5 , and 2 − 1 / 9 (i.e., 1 8 / 9 ). The horizontal fraction bar is first attested in the work of Al-Hassār (fl. 1200), [35] a Muslim mathematician from Fez, Morocco, who specialized in Islamic inheritance jurisprudence.
Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient. At an elementary level the division of two natural numbers is, among other possible interpretations ...
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2] Since the problem had withstood the attacks of ...
1/4 + 1/16 + 1/64 + 1/256 + ⋯. Archimedes' figure with a = 3 4 . In mathematics, the infinite series 1 4 + 1 16 + 1 64 + 1 256 + ⋯ is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC. [1] As it is a geometric series ...
A pentatope number is a number in the fifth cell of any row of Pascal's triangle starting with the five-term row 1 4 6 4 1 . The sum of the reciprocals of the pentatope numbers is 4 / 3 . Sylvester's sequence is an integer sequence in which each member of the sequence is the product of the previous members, plus one.
A variant of the story has been told with 11 camels, to be divided into 1 ⁄ 2, 1 ⁄ 4, and 1 ⁄ 6. [22] [23] Another variant of the puzzle appears in the book The Man Who Counted, a mathematical puzzle book originally published in Portuguese by Júlio César de Mello e Souza in 1938. This version starts with 35 camels, to be divided in the ...
For instance, 6 has proper divisors 1, 2 and 3, and 1 + 2 + 3 = 6, so 6 is a perfect number. The next perfect number is 28, since 1 + 2 + 4 + 7 + 14 = 28. The first four perfect numbers are 6, 28, 496 and 8128. [1] The sum of proper divisors of a number is called its aliquot sum, so a perfect number is one that is equal to its aliquot sum.
The final digit of a triangular number is 0, 1, 3, 5, 6, or 8, and thus such numbers never end in 2, 4, 7, or 9. A final 3 must be preceded by a 0 or 5; a final 8 must be preceded by a 2 or 7. In base 10, the digital root of a nonzero triangular number is always 1, 3, 6, or 9. Hence, every triangular number is either divisible by three or has a ...