enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    A game of snakes and ladders or any other game whose moves are determined entirely by dice is a Markov chain, indeed, an absorbing Markov chain. This is in contrast to card games such as blackjack, where the cards represent a 'memory' of the past moves. To see the difference, consider the probability for a certain event in the game.

  3. Markov chain Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Markov_chain_Monte_Carlo

    In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution.Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution.

  4. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    If the Markov chain is time-homogeneous, then the transition matrix P is the same after each step, so the k-step transition probability can be computed as the k-th power of the transition matrix, P k. If the Markov chain is irreducible and aperiodic, then there is a unique stationary distribution π. [41]

  5. Uniformization (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uniformization...

    In probability theory, uniformization method, (also known as Jensen's method [1] or the randomization method [2]) is a method to compute transient solutions of finite state continuous-time Markov chains, by approximating the process by a discrete-time Markov chain. [2]

  6. Markov Chains and Mixing Times - Wikipedia

    en.wikipedia.org/wiki/Markov_Chains_and_Mixing_Times

    A family of Markov chains is said to be rapidly mixing if the mixing time is a polynomial function of some size parameter of the Markov chain, and slowly mixing otherwise. This book is about finite Markov chains, their stationary distributions and mixing times, and methods for determining whether Markov chains are rapidly or slowly mixing. [1] [4]

  7. Monte Carlo molecular modeling - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_molecular_modeling

    It employs a Markov chain procedure in order to determine a new state for a system from a previous one. According to its stochastic nature, this new state is accepted at random. Each trial usually counts as a move. The avoidance of dynamics restricts the method to studies of static quantities only, but the freedom to choose moves makes the ...

  8. Construction of an irreducible Markov chain in the Ising model

    en.wikipedia.org/wiki/Construction_of_an...

    Although the resulting Markov Chain possibly cannot leave the initial state, the problem does not arise for a 1-dimensional Ising model. In higher dimensions, this problem can be overcome by using the Metropolis-Hastings algorithm in the smallest expanded sample space S ⋆ ( a , b ) {\displaystyle S^{\star }(a,b)} .

  9. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...